Aloha :)
Du brauchst die Produktregel und die Kettenregel. Beachte bei der inneren Ableitung, also beim Ableiten von \(\pink{-x^2-y^2}\), dass partiell nach \(x\) abgeleitet wird und daher \(y\) wie eine konstante Zahl behandelt wird.
$$\frac{\partial}{\partial x}(\,\underbrace{-2x}_{=u}\cdot\underbrace{e^{\pink{-x^2-y^2}}}_{=v}\,)=\underbrace{(-2)}_{=u'}\cdot\underbrace{e^{\pink{-x^2-y^2}}}_{=v}+\underbrace{(-2x)}_{=u}\cdot\underbrace{\overbrace{e^{\pink{-x^2-y^2}}}^{\text{äußere Abl.}}\cdot\overbrace{(\pink{-2x})}^{\text{innere Abl.}}}_{=v'}=e^{\pink{-x^2-y^2}}(4x^2-2)$$