Aloha :)
Ich empfehle in beiden Fällen das Quotientenkriterium:$$\left|\frac{a_{k+1}}{a_k}\right|=\left|\frac{ \frac{1}{(k+1)^2} \left( \frac75 \right)^{k+1}}{ \frac{1}{k^2}\left(\frac75\right)^k }\right|=\frac{k^2}{(k+1)^2}\cdot\frac75=\frac75\left(\frac{k}{k+1}\right)^2=\frac75\left(1-\frac{1}{k+1}\right)^2\to\frac75>1$$Die erste Reihe divergiert.
$$\left|\frac{a_{k+1}}{a_k}\right|=\left|\frac{(k+1)^2\left(-\frac57\right)^{k+1}}{ k^2\left(-\frac57\right)^k }\right|=\frac{(k+1)^2}{k^2}\cdot\frac57=\frac57\left(\frac{k+1}{k}\right)^2=\frac57\left(1+\frac{1}{k}\right)^2\to\frac57<1$$Die zweite Reihe konvergiert.