\(\begin{aligned} &p(x=4) &&= &&&\binom{20}{4} \left(\frac{25}{100}\right)^{4} \left(1-\frac{25}{100}\right)^{20-4} &&&&\approx 19,0\, \% \\\\ &p(x\leq3) &&= \sum \limits_{k=0}^{3} &&&\binom{20}{k} \left(\frac{25}{100}\right)^{k} \left(1-\frac{25}{100}\right)^{20-k} &&&&\approx 22,5\, \% \\\\ &p(x\geq 7) &&= \sum \limits_{k=7}^{20} &&&\binom{20}{k} \left(\frac{25}{100}\right)^{k} \left(1-\frac{25}{100}\right)^{20-k} &&&&\approx 21,4\, \% \\\\&p(4 \lt x \lt 12) &&= \sum \limits_{k=5}^{11} &&&\binom{20}{k} \left(\frac{25}{100}\right)^{k} \left(1-\frac{25}{100}\right)^{20-k} &&&&\approx 58,4\, \% \end{aligned} \)