Jedoch verstehe ich die Letzte Frage noch nicht oder kann sie mit meinem Wissen noch nicht lösen.
"Für welche Belegung von x wird der Flächeninhalt eines Dreiecks maximal? Berechne Amax"
Na ja - Du solltest zumindest wissen, ob Du die Frage selbst verstehst. Dazu muss man noch nicht wissen, weiß man es löst!
Schau Dir dazu mal das BIld hier an.
https://www.desmos.com/calculator/ky4czhjjhe
Durch Verschieben des Punktes \(B\) mit der Maus ändert sich auch Punkt \(C\), dessen X-Koordinate das \(x\) für die Flächenberechnung \(A(x)\) ist:$$A(x)= -0,25x^2 +3,75x +6$$Von \(x=1\) ausgehend wächst die Fläche des Dreiecks an und erreicht dann bei \(x=7,5\) ein Maximum.
Der Graph der Kurve \(A\) über \(x\) ist eine nach unten offene Parabel, die ich oben rot dargestellt habe.
Das Maximum \(A_{\max}\) kann man berechnen indem man \(A(x)\) ableitet und die Ableitung zu 0 setzt$$A'(x)= -0,5x_{\text{opt}} + 3,75 = 0 \implies x_{\text{opt}}= \frac{3,75}{0,5} = 7,5$$oder die Funktion \(A(x)\) in die Scheitelpunktform umwandelt$$\begin{aligned} A(x) &= -0,25x^2 +3,75x +6 \\ &= -\frac{1}{4}\left(x^2 -15x - 24\right) \\ &= -\frac{1}{4}\left(x^2 -15x +(7,5)^2 - (7,5)^2- 24\right) \\ &= -\frac{1}{4}\left((x^2 -7,5)^2 - 80,25\right) \\ &= -\frac{1}{4}\left(x^2 -{\color{red}7,5}\right)^2 + 20,0625 \\ \implies x_s &= 7,5 \end{aligned}$$