handelt es sich um
\(\small A \, := \, \left(\begin{array}{rrr}m \; \lambda + c&-c&0\\-c&2 \; c \; m \; \lambda&-c\\0&-c&m \; \lambda + c\\\end{array}\right)\)
?
A:={{m λ+c,-c,0},{-c, m λ 2 c,-c},{0,-c,m λ+c}}
https://www.geogebra.org/classic#cas
da kommt
\(|A| = 2 \; c \; \left(c + m \; \lambda \right) \; \left(c \; m \; \lambda - c + m^{2} \; \lambda^{2} \right)\)
\(\small \displaystyle \left\{ \lambda = \frac{-c}{m}, \lambda = \frac{-c \; m + \sqrt{c^{2} + 4 \; c} \; \left|m\right|}{2 \; m^{2}}, \lambda = \frac{-c \; m - \sqrt{c^{2} + 4 \; c} \; \left|m\right|}{2 \; m^{2}} \right\} \)