Aufgabe:
Text erkannt:
Gegeben das folgende Anfangswertproblem
\( \frac{\mathrm{d} y}{\mathrm{~d} t}-y=f(t), \quad y(0)=-1 \)
Bestimmen Sie mi Hilfe der Methode der Variation der Konstanten die Lösungen der folgenden Differentialgleichungen
1. Die homogene Lösung des Anfangswertproblems
\( \frac{\mathrm{d} y}{\mathrm{~d} t}-y=0, \quad y(0)=-1 \)
\( y(t)= \)
2. Die Lösung des Anfangswertproblems für \( f(t)=t^{3}+3 t \)
\( \frac{\mathrm{d} y}{\mathrm{~d} t}-y=t^{3}+3 t, \quad y(0)=-1 \)
\( y(t)= \)
3. Die Lösung des Anfangswertproblems für \( f(t)=\cos (2 t) \)
\( \frac{\mathrm{d} y}{\mathrm{~d} t}-y=\cos (2 t), \quad y(0)=-1 \)
\( y(t)= \)
Problem/Ansatz:
Hallo, könnte mir hier jemand weiterhelfen?