0 Daumen
344 Aufrufe

Ich muss das Integral berechnen


I= int (4eφ+2ez+er) dσ

r=3,     1≤ z ≤ 2


Hab gerade angefangen, aber weiß nicht, was ich weiter machen kann


2B69DDAF-C475-4581-ACB6-20674B3C0A1E.jpeg

Text erkannt:

\( I=\int \limits_{\partial W}\left(4 \vec{e}_{y}+2 \bar{e}_{z}+\bar{e}_{r}\right) d \sigma \)
dext \( \quad v=\left(\begin{array}{c}-4 \sin \varphi+\cos 0 \\ 4 \operatorname{sos} y \\ 2\end{array}\right. \) \( \operatorname{rot} x=\operatorname{er} \frac{\partial}{\partial r}+\frac{1}{\rho} \frac{\partial e_{4}}{\partial u_{4}}, \frac{\partial}{\partial{ }_{2}} e_{2} \) \( \operatorname{rot} v=0 \quad+\frac{1}{\rho}\left(\begin{array}{c}-4 \\ -4 \cos 64 \\ -4 \sin +\cos \varphi\end{array}\right) \operatorname{let}_{t} 0 \)

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community