Aufgabe:
Für eine natürliche zahl \(n\) seien \(A = (a_{ij}) \in \mathbb R^{n \times n} \) und \(B = (b_{ij}) \in \mathbb R^{n \times n} \). Es gelte nun \((a_{ij})=0\) und \((b_{ij})=0 \:\:\: \forall i,j: \:\: 1 ≤ i < j ≤ n \)
Zeigen Sie, dass AB eine Matrix vom gleichen Typ ist.
Problem/Ansatz:
Also ich weiß, dass die Matrix oberhalb der Diagonale nur aus Nullen besteht und in jeder Zeile \(n-i\) Nullen, und in jeder Spalte \(j-1\) Nullen sind. In jeder Spalte gibt es also eine Null mehr als in der vorherigen.
Bei Multiplikation von AB kommt in jeder Zeile von A ein weiteres Element \(≠0\) dazu, in jeder Spalte von B jedoch auch eine Null. So bildet sich die Diagonale, da so nur \(a_{ij}, b_{ij}\) mit den gleichen Indexes übrig bleiben und die Grenze zu den Nullen oberhalb bilden.
Wie geht es jetzt weiter?? Vielen Dank!