Es ist egal ob man die Vektoren Zeilen oder Spaltenweise in die Matrix einträgt.
[1, 1, 3]
[1, 2, 1] II - I
[1, 3, 0] III - I
[1, 1, 3]
[0, 1, -2]
[0, 2, -3] III - 2*II
[1, 1, 3]
[0, 1, -2]
[0, 0, 1] → Linear unabhängig
oder auch
[1, 1, 1]
[1, 2, 3] II - I
[3, 1, 0] III - 3*I
[1, 1, 1]
[0, 1, 2]
[0, -2, -3] III + 2*II
[1, 1, 1]
[0, 1, 2]
[0, 0, 1] --> Linear unabhängig
Es gilt auch das der Zeilenrang gleich dem Spaltenrang ist. In diesem Fall ist der Rang 3.
Ich habe in beiden Fällen einfache Zeilenumformungen gemacht.