0 Daumen
279 Aufrufe

Aufgabe:

Basiswechsel


Problem/Ansatz:


Die Matrix A habe die Eigenwerte λ1 = 1 und λ2 = 4 sowie die Eigenvektoren v1 = (2, 3) zu λ1 und v2 = (1, 2) zu λ2. Bestimmen Sie aus diesen Angaben die Matrix A bezuglich der kanonischen Basis ( e1, e2).


***

Ich denke, dass e1 = 2v1−3v2 und e2 = 2v1−v1 , Dann kann ich Linearität zu bestimmen? ( Ae1 and Ae2)

Wenn Sie einen Lösungsvorschlag haben, würde ich mich freuen, wenn Sie helfen könnten.

LG

Avatar von

1 Antwort

0 Daumen

Hallo

du hast das ja schon beinahe , denn du Weisst die Spalten der Matrix sind die Bilder der Standardbasis.

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community