(a)
Sei \( x, y \) mit \( x^2 + y^2 <1 \) gegeben, dann liegt der Punkt \( \begin{pmatrix} x\\y \end{pmatrix} \) im inneren des Einheitskreises.
Die Abbildung \( h(v) \) bildet diesen Punkt auf $$\begin{pmatrix} x\\y \end{pmatrix} \frac{ 1 } { x^2 +y^2 } $$ ab. Der Betrag von diesem Ausdruck ist
$$ \frac{x^2 +y^2} {(x^2+y^2)^2} = \frac{1}{x^2+y^2} > 1 $$ Also wird durch diese Abbildung das innere des Einheitskreises auf das Äußere des Einheitskreises abgebildet.
Man sieht auch sofort, dass der Rand des Kreises wieder auf den Rand abgebildet wird, da ja dann \( x^2+y^2 =1 \) gilt.
(b)
$$ (h \circ h)(v) = h \left( \frac{v}{|v|^2} \right) = \frac{ \frac{v}{|v|^2} }{ \frac{ |v|^2 }{ |v|^4 } } = v $$
(c)
\( \angle \ \frac { \left( \frac{u}{|u|^2} , \frac{v}{|v|^2} \right) } { \left| \frac{u}{|u|^2} \right|^2 \left| \frac{v}{|v|^2} \right| } = \angle \ (u,v) \)