Text erkannt:
Aufgabe 2 (Lineare Abbildungen und Matrizen \( (*) \) ).
Gegeben seien die Vektoren
\( u_{1}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right), u_{2}=\left(\begin{array}{r} 1 \\ -1 \\ 0 \end{array}\right), u_{3}=\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right), u_{4}=\left(\begin{array}{l} 4 \\ 2 \\ 2 \end{array}\right), w=\left(\begin{array}{l} 2 \\ 3 \\ 5 \end{array}\right) \)
sowie die lineare Abbildung \( \varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) mit:
\( \varphi\left(u_{1}\right)=\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right), \varphi\left(u_{2}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \varphi\left(u_{3}\right)=\left(\begin{array}{r} 2 \\ -1 \\ 7 \end{array}\right) \)
a) Zeigen Sie, daß die Vektoren \( \left\{u_{1}, u_{2}, u_{3}\right\} \) eine Basis des \( \mathbb{R}^{3} \) bilden.
b) Berechnen Sie \( \varphi\left(u_{4}\right) \)
Moin, kann ich bei a) einfach zeigen, dass man aus Rechnungen mit u1, u2 und u3 (001) (100) und (010) herausbekommen kann?
und was soll ich bei b) berechnen? Phi von etwas habe ich noch nie gemacht und dazu finde ich auch nichts vernünftiges im Netz.
Text erkannt:
c) Geben Sie einen Vektor \( u_{5} \) an, mit \( \varphi\left(u_{5}\right)=w \).
d) Geben Sie die lineare Abbildung \( \varphi \) in der Form \( \varphi(x)=A x \) an.
bei c) und d) selbes Problem wie bei b), vielen Dank für eure Zeit!