Zu (i): Ich schreiben \(N(T),R(T)\) für Kern und Bild.
Es gilt immer: \(N(T) \sub N(T \circ T)\); denn wenn \(Tx=0\), dann auch \(T \circ T(x)=T(Tx)=T(0)=0\).
Es gelte \(N(T) \cap R(T)=\{0\} \).
Es sei \(x \in N(T \circ T)\), also \(T(Tx)=0\). Damit ist \(Tx \in R(T)\) und \(Tx \in N(T)\). Es folgt \(Tx=0\), also \(x \in N(T)\), Damit ist gezeigt: \(N(T \circ T) \sub N(T)\). (Di Gleichheit folgt dann aus der Vorbemerkung.
Es gelte \(N(T \circ T) \sub N(T)\).
Es sei \(x \in N(T) \cap R(T)\). Dann ist \(Tx=0\) und es existiert ein \(y \in V\) mit \(x=Ty\). Daraus folgt, dass \(T \circ T(y)=Tx=0\) ist, also \(y \in N(T \circ T)\). Nach Voraussetzung ist dann \(0=Ty=x\), wie behauptet.