Aloha :)
Ich schreibe für den unleserlichen Bruch im Folgenden einfach \(B\).
Hier wurde der binomische Lehrsatz verwendet:$$(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^{n-k}b^k$$
Konkret sieht die Umwnadlung so aus:$$\phantom=\binom{n}{0}+\binom{n}{1}\,B+\binom{n}{2}\,B^2+\cdots+\binom{n}{n}\,B^n$$$$=\binom{n}{0}\cdot\pink{1^n}\cdot\pink{B^0}+\binom{n}{1}\cdot\pink{1^{n-1}}\,B^{\pink1}+\binom{n}{2}\cdot\pink{1^{n-2}}\cdot B^2+\cdots+\binom{n}{n}\cdot\pink{1^{n-n}}\cdot B^n$$$$=\sum\limits_{k=1}^n\binom{n}{k}\cdot1^{n-k}\cdot B^k=(1+B)^n$$