Um mit dem Cauchyprodukt weiterzukommen, benötigst du einige Fakten zu den Binomialkoeffizienten:
\(\binom{2n}{2i} = \frac{(2n)!}{(2i)!(2(n-i))!} \quad (1)\)
\(2^{2n} = (1+1)^{2n} =\sum_{k=0}^{2n}\binom{2n}k\) und
\(0 = (1-1)^{2n} =\sum_{k=0}^{2n}(-1)^k\binom{2n}k\)
$$\Rightarrow 2^{2n} + 0 = 2\sum_{\stackrel{k=0}{k gerade}}^{2n}\binom{2n}k $$ $$\Rightarrow\sum_{\color{blue}{i=0}}^{\color{blue}{n}}\binom{2n}{2i} =2^{2n-1} \quad (2)$$
Damit können wir das Cauchy-Produkt auswerten:
$$\begin{array}{rcl} \cos^2 x &\stackrel{Cauchy-Produkt}{=} & \sum_{n=0}^{\infty}\sum_{i=0}^n \frac{(-1)^{i+n-i}}{(2i)!(2(n-i))!}x^{2n} \\ & = & \sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}\sum_{i=0}^n \frac{(2n)!}{(2i)!(2(n-i))!}x^{2n} \\ & \stackrel{(1)}{=} & \sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}\sum_{i=0}^n \binom{2n}{2i}x^{2n} \\ & \stackrel{(2)}{=} & 1 + \frac 12\sum_{\color{blue}{n=1}}^{\infty}\frac{(-1)^{n}}{(2n)!}2^{2n}x^{2n} \\ & = & 1 + \frac 12 (\cos 2x - 1) \\ & = & \frac 12(1+\cos 2x )\end{array}$$