0 Daumen
901 Aufrufe

Aufgabe:

Gegeben sie die Preis-Absatz-Funktion: p=p(x)=1803x p=p(x)=180-3 x
und die Kostenfunktion: K=K(x)=90x+600 \mathrm{K}=K(x)=90 x+600 .

Ist alles so korrekt ? :)  , und problem bei d) 2. aufgabe


Problem/Ansatz:

a) Wie hoch ist die maximal abzusetzende Menge x x ?

P(0)  = 180* 3 - 0

= 180 Stück


b) Stellen Sie die Erlösfunktion? Wie hoch ist der maximale Erlös?

E(x) = 180x -3x2

E'(x) = 180-6x

180-6x= 0

x= 30 , sprich größter erlös bei dieser menge


c) Welcher Preis kann im Erlösmaximum erreicht werden?

P(30)  = 180* 3 - 30

= 90 GE


d) Stellen Sie die Gewinnfunktion auf. Wie hoch ist der maximale Gewinn? Wo liegen die Grenzen der Gewinnzone?

G(x) = 180x -3x2 - 90x + 600


???? Wie berechne ich hier den maximalen gewinn? setze ich die x=180 stück ein ?  Weil die x=30 stück setzte ich ja unten bei e) Wie hoch ist der Gewinn im Erlösmaximum bereits ein

-3x2 +90x +600 = 0     / -3

x2 -30x-200 -> PQ

x1= 35,62

x2= -5,62  , sind die grenzen der Gewinnzone



e) Wie hoch ist der Gewinn im Erlösmaximum?


180*30 - 3*302 - 90*30 +600
= 600 maximaler gewinn  im Erlösmaximierung

Avatar von

2 Antworten

0 Daumen
Wie berechne ich hier den maximalen gewinn?

Berechne: G'(x)= 0

Ergebnis in G(x) einsetzen

Avatar von 39 k

Hallo :),

also ich habe jetzt bezüglich der Gewinngrenzen folgendes gemacht:

E(x) - K(x)

= 180x - 3x2  - 90x + 600

dann habe ich alles zusammengefasst

-3x2 + 90x + 600 = 0

x2 - 30 - 200 ; damit PQ Formel angewedet

x1= 35,61

x2= -5,61



Und bezüglich des Gewinn im Erlösmaxim habe ich die vorher berechneten x=30 in die

funktion eingefügt

-3*302 + 90*30 + 600
=600





0 Daumen

Die Antworten bei d) und e) sind etwas vermurkst. Die Gewinnfunktion hört mit -600 auf, und die Aussage

x2= -5,62  , sind die grenzen der Gewinnzone

würde implizieren, dass man negative Stückzahlen herstellt.

Avatar von 47 k

Hallo :),

also ich habe jetzt bezüglich der Gewinngrenzen folgendes gemacht:

E(x) - K(x)

= 180x - 3x2   -   90x + 600

dann habe ich alles zusammengefasst

-3x2 + 90x + 600 = 0

x2 - 30 - 200 ; damit PQ Formel angewedet

x1= 35,61

x2= -5,61


Und bezüglich des Gewinn im Erlösmaxim habe ich die vorher berechneten x=30 in die

funktion eingefügt

-3*302 + 90*30 + 600


Die Gewinnfunktion muss ja mit + 600 aufhören weil die Kostenfunktion ja 90x + 600 lautet oder nicht?


Vielen dank schonmal !

Gewinnfunktion muss ja mit + 600 aufhören

Nein. Deshalb schrieb ich:

Die Gewinnfunktion hört mit -600 auf

Denn Kosten werden abgezogen, um den Gewinn zu berechnen. Die 600 sind die Fixkosten.

Also dann habe ich jetzt folgende Gewinnfunktion

G(x) = 180x - 3x2 - 90x -600


Wie hoch ist der maximale gewinn ?

G'(x) = 0

x= 15

G(15) = - 1275


Grenzen Gewinnzonen

x2 -30x + 200

PQ

x1= 20

x2= 10


Wie hoch ist der gewinn im erlösmax?

180 * 30 - 3* 302 -90 * 30 - 600

= -600


Hoffentlich sollte also jetzt alles richtig sein :)

Ich danke dir vielmals !

G(15) = - 1275

... stimmt nicht.

... 75 ist die Antwort. Ich sitzt heute schon anscheinend bisschen zu lange am lernen..

Ein anderes Problem?

Stell deine Frage