a) Zeigen Sie, dass für z = f(x, y) = ln(√x+√y) die Gleichung ... erfüllt ist
\( \frac{\partial z}{\partial x} \)= \( \frac{1}{2 \sqrt{x}(\sqrt{x}+\sqrt{y})} \)
\( \frac{\partial z}{\partial y} \)= \( \frac{1}{2 \sqrt{y}(\sqrt{x}+\sqrt{y})} \)
einsetzt in:
\( x \cdot \frac{\partial z}{\partial x}+y \cdot \frac{\partial z}{\partial y}=\frac{1}{2} \)
x \( \frac{1}{2 \sqrt{x}(\sqrt{x}+\sqrt{y})} \) + y \( \frac{1}{2 \sqrt{y}(\sqrt{x}+\sqrt{y})} \) =\( \frac{1}{2} \)
\( \frac{1}{2(\sqrt{x}+\sqrt{y})} \cdot\left(\frac{x}{\sqrt{x}}+\frac{y}{\sqrt{y}}\right)=1/2 \)
\( \frac{1}{2(\sqrt{x}+\sqrt{y})} \cdot\left(\frac{x \cdot \sqrt{x}}{\sqrt{x} \cdot \sqrt{x}}+\frac{y\sqrt{y}}{\sqrt{y} \cdot \sqrt{y}}\right)=\frac{1}{2} \)
\( \frac{1}{2} \) =\( \frac{1}{2} \)
b) Berechnen Sie die Rotation, rot v, des Vektorfeldes v : R3 → R3