\(f(x)= -x^2 + 2a^2\) \(g(x)= x^2 \) \(A=72\)
Schnittpunkte:
\( -x^2 + 2a^2=x^2\)
\(x^2=a^2\)
\(x=|a|\) entfällt , da \(a>0\) \(x=a\)
Differenzfunktion:
\(d(x)=-x^2 + 2a^2-x^2=-2x^2+2a^2\)
Da beide Graphen symmetrisch zur y-Achse sind:
\(36= \int\limits_{0}^{a} (-2x^2+2a^2)dx=[-\frac{2}{3}x^3+2a^2*x]→[ -\frac{2}{3}a^3+2a^3 ]-0=\frac{4}{3}*a^3\)
\(\frac{4}{3}*a^3=36\) → \(\frac{1}{3}*a^3=9\) → \(a^3=27\) → \(a=3\)