(a):
Additivität:
\(<v,(f+g)^{adj}(w)>=<(f+g)(v),w>=<f(v)+g(v),w>=\)
\(=<f(v),w>+<g(v),w>=<v,f^{adj}(w)>+<v,g^{adj}(w)>=\)
\(=<v,f^{adj}(w)+g^{adj}(w)>=<v,(f^{adj}+g^{adj})(w)>\)
für alle \(v,w\in V\), also \((f+g)^{adj}=f^{adj}+g^{adj}\).
Semihomogenität:
\(<v,(\lambda f)^{adj}(w)>=<(\lambda f)(v),w>=<\lambda\cdot f(v),w>=\lambda<f(v),w>=\)
\(=\lambda<v,f^{adj}(w)>=<v,\overline{\lambda}f^{adj}(w)>\), also
\((\lambda f)^{adj}=\overline{\lambda}f^{adj}\).