Aufgabe:
Sei \( f \in \operatorname{Hom}_{K}(V, W) \) und \( T \) ein Unterraum von \( W \). Beweise die Urbildraum-Dimensionsformel \( \operatorname{dim} f^{-1}(T)=\operatorname{dim}(T \cap \operatorname{im}(f))+\operatorname{df}(f) \).
Problem/Ansatz:
Wie kann man die Urbildraum-Dimensionsformel beweisen?
Bekannt ist mir die Dimensionsformel und der Dimensionssatz (hat das etwas hiermit zu tun?) und was ist mit \(\operatorname{df}(f) \) gemeint?