Hallo,
ich würde mit sin(x+y) anfangen.
\( 6 \sin x \sin ^{2} y+3 \sin x \cos ^{2} y+\sin (x+y) \cos y -\cos x\sin y \cos y\)
\( =6 \sin x \sin ^{2} y+3 \sin x \cos ^{2} y+(\cos (y) \sin (x)+\cos (x) \sin (y) ) \cos y -\cos x\sin y \cos y\)
\( =6 \sin x \sin ^{2} y+3 \sin x \cos ^{2} y+\cos ^2(y) \sin (x)+\cos (x) \sin (y) \cos y -\cos x\sin y \cos y\)
\( =6 \sin x \sin ^{2} y+4 \sin x \cos ^{2} y\)
\( =2 \sin x (\sin ^{2} y+2\sin^2y+2 \cos ^{2} y)\)
\( =2 \sin x (\sin ^{2} y+2)\)