⚠️ Diese Frage wird gelöscht.
Nachfragen zu einer Aufgabe immer als Kommentar bei der ursprünglichen Aufgabe.
0 Daumen
145 Aufrufe

Aufgabe:

IMG_2821.jpeg

Text erkannt:

Die Gerade \( \mathrm{g} \) ist gegeben durch die Geradengleichung
\( g: \vec{v}=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right)(r \in \mathbb{R}) \)
Prüfe, ob der Punkt \( P(15 \mid 22) \) auf g liegt.
A - Vektorgleichung aufstellen
Stelle die Vektorgleichung auf, die erfüllt sein muss, damit \( \mathrm{P} \) auf der Geraden g liegt.
\( \left(\begin{array}{l} 15 \\ 22 \end{array}\right)=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right) \)
Lösungsweg
B - Gleichung lösen
Bestimme \( r \), so dass die Gleichung für die \( \boldsymbol{x} \)-Koordinate \( (15=3+r \cdot 4) \) erfi ist.
\( r= \)
C

IMG_2821.jpeg

Text erkannt:

Die Gerade \( \mathrm{g} \) ist gegeben durch die Geradengleichung
\( g: \vec{v}=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right)(r \in \mathbb{R}) \)
Prüfe, ob der Punkt \( P(15 \mid 22) \) auf g liegt.
A - Vektorgleichung aufstellen
Stelle die Vektorgleichung auf, die erfüllt sein muss, damit \( \mathrm{P} \) auf der Geraden g liegt.
\( \left(\begin{array}{l} 15 \\ 22 \end{array}\right)=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right) \)
Lösungsweg
B - Gleichung lösen
Bestimme \( r \), so dass die Gleichung für die \( \boldsymbol{x} \)-Koordinate \( (15=3+r \cdot 4) \) erfi ist.
\( r= \)
C


IMG_2821.jpeg

Text erkannt:

Die Gerade \( \mathrm{g} \) ist gegeben durch die Geradengleichung
\( g: \vec{v}=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right)(r \in \mathbb{R}) \)
Prüfe, ob der Punkt \( P(15 \mid 22) \) auf g liegt.
A - Vektorgleichung aufstellen
Stelle die Vektorgleichung auf, die erfüllt sein muss, damit \( \mathrm{P} \) auf der Geraden g liegt.
\( \left(\begin{array}{l} 15 \\ 22 \end{array}\right)=\left(\begin{array}{l} 3 \\ 7 \end{array}\right)+r \cdot\left(\begin{array}{l} 4 \\ 5 \end{array}\right) \)
Lösungsweg
B - Gleichung lösen
Bestimme \( r \), so dass die Gleichung für die \( \boldsymbol{x} \)-Koordinate \( (15=3+r \cdot 4) \) erfi ist.
\( r= \)
C

Avatar von

1 Antwort

0 Daumen

Hallo

die Aufgabe steht da ja sehr oft. die Gleichung

15=3+r⋅4 auch sehr oft, warum kannst du die nicht nach r auflösen?

15=3+r⋅4  |-3 ergibt 12=r*4 kannst du jetzt r bestimmen?

dann die nächste Gleichung

22=7+r*5  |-7 ergibt 15=r*5 daraus wieder r. wenn eidesmal dasselbe r rauskommt liegt der Punkt auf der Geraden

anderer Weg: das r aus der ersten Gl. in die zweite einsetzen und sehen ob sie erfüllt ist, wenn ja liegt der Punkt auf der Geraden.

Du solltest Fragen stellen, was du nicht kannst und nicht umkommentiert deine aufgaben zig-fach einfach posten.

lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community