Es geht doch nicht um die Fläche, sondern um das Integral:
\( \int\limits_{\frac{\pi}{7}}^{\frac{15\pi}{7}} \cos(x-\frac{\pi}{2}) dx\)
\( = [-\sin(x-\frac{\pi}{2})]_\frac{\pi}{7}^\frac{15\pi}{7} =-\sin(\frac{15\pi}{7}-\frac{\pi}{2}) +\sin(\frac{\pi}{7}-\frac{\pi}{2}) \)
\( =-\sin(\frac{23\pi}{14}) +\sin(\frac{-5\pi}{14})=-\sin(\frac{23\pi}{14}-2\pi) +\sin(\frac{-5\pi}{14})\)
\(=-\sin(\frac{-5\pi}{14}) +\sin(\frac{-5\pi}{14})=0\)