Aufgabe:
Text erkannt:
10.4 Seien \( n \geq 2, \mathbb{K} \) ein Körper und \( \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{K} \). Beweisen oder widerlegen Sie, dass die folgenden Mengen Unterräume des Vektorraums \( \mathbb{K}^{n} \) sind:
(a) \( M_{1}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid \sum \limits_{i=1}^{n} \alpha_{i} x_{i}=1\right\} \),
(b) \( M_{2}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid \sum \limits_{i=1}^{n} \alpha_{i} x_{i}=0\right\} \),
(c) \( M_{3}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \mid x_{1} \cdot x_{2}=0\right\} \).
(d) Sei nun \( \mathbb{K}=\mathbb{R} \) und \( M_{4}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum \limits_{i=1}^{n-1} x_{i} \geq x_{n}\right\} \).
(6 Punkte)
Problem/Ansatz:
bei a und c handelt es sich nicht um Untervekorräume, dass habe ich auch schon mit Gegenbeispielen gezeigt. Aber bei b und d handelt es sich um untervektorräume, sodass ich dies ja mit dem Unterraumkriterium beweisen kann. Dieses besagt ja das M nicht leer sein darf und das sowohl für x als auch für die Multiplikation abgeschlossen ist. Aber wie kann ich diese eigeschaften nun vernünftig mathematisch im Beweis formulieren. Die Summen irritieren mich irgendwie.