(a) \( U_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}-x_{2}=0\right\} \)
(b) \( U_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}-x_{2}=3\right\} \)
(c) \( U_{3}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid\right. \) Es gibt ein \( t \in \mathbb{R} \) mit \( x_{1}=t \) und \( \left.x_{2}=2 t\right\} \)
(d) \( U_{4}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid\right. \) Es gibt ein \( t \in \mathbb{R} \) mit \( x_{1}=t^{2} \) und \( \left.x_{2}=t^{3}\right\} \)
(e) \( U_{5}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}\right. \) ist eine ganze Zahl \( \} \)
Nur kurz zur Überprüfung, a) ist ein linearer Unterraum, b) ist kein linearer Unterraum, c) ist ein linearer Unterraum, d) ist kein linearer Unterraum, e) ist kein linearer Unterraum.