Berechnung ohne Substitution und ohne p q Formel:
\(f(x) = -2x^5 + 10x^3 -12x\) → \( -2x^5 + 10x^3 -12x=0\) → \( x^5 - 5x^3 +6x=0\)
\(x_1=0\)
\( x^4 - 5x^2 +6=0\)
\( x^4 - 5x^2+(\frac{5}{2})^2 =-6+(\frac{5}{2})^2\)
\( (x^2 -\frac{5}{2})^2 =-6+(\frac{5}{2})^2=0,25 | \pm \sqrt{~~} \)
1.)
\( x^2 -2,5=0,5 \)
\( x^2 =3 | \pm \sqrt{~~} \)
\( x_2 =\sqrt{3} \)
\( x_3 =-\sqrt{3} \)
2.)
\( x^2 -2,5=-0,5 \)
\( x^2 =2 | \pm \sqrt{~~} \)
\( x_4 = \sqrt{2} \)
\( x_5 = -\sqrt{2} \)