Aufgabe:
Zeigen Sie die Äquivalenz folgender Aussagen(Isometrien)
Problem/Ansatz:
Text erkannt:
Seien \( V \) und \( W \) euklidische Vektorräume und \( \varphi: V \rightarrow W \) eine lineare Abbildung. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
i) Für alle \( x, y \in V \) gilt: \( x \perp y \Longrightarrow \varphi(x) \perp \varphi(y) \).
ii) Für alle \( x, y \in V \) gilt: \( \|x\|=\|y\| \Longrightarrow\|\varphi(x)\|=\|\varphi(y)\| \).
iii) Es gibt eine reelle Zahl \( c \geq 0 \), sodass für alle \( x \in V \) gilt: \( \|\varphi(x)\|=c\|x\| \).
iv) Es gibt eine lineare Isometrie \( \psi: V \rightarrow W \) und eine reelle Zahl \( c>0 \) mit \( \varphi=c \psi \) oder \( \varphi \) ist die Nullabbildung.
Ansatz:
iv) -> iii) Wenn φ die Nullabbildung, erfüllt c=0 die erfüllte Eigenschaft. Sei nun c>0 . Dann gibt es zu φ eine Isometrie ψ , sodass φ= c* ψ und c reell.
Dann gilt ||φ(x)||= |c|*||ψ(x)||=c*||x|| , da c reel und ψ eine Isometrie laut iv.
iii -> ii) Nach iii) gilt ||φ(x)|| = c||x|| für ein c>=0 und alle x element V, also da ||x||=||y|| : ||φ(x)|| = c||x||=c||y||=|||φ(y)||
Weiter bin ich nicht gekommen, habt ihr da tipps und stimmt mein Ansatz? Kommt mir bisher zu leicht vor XD