0 Daumen
204 Aufrufe

image.jpg

Text erkannt:

\( \begin{array}{l}\text { ? c) }(x y-3 y)^{2}= \\ x^{2} y^{2}-2 \cdot x y \cdot 3 y+3 y^{2} \\ \text { ? 8) }(7-\alpha)^{2}= \\ 7^{2}+7 \cdot \alpha-\alpha^{2} \\ 49+7 \alpha-\alpha^{2} \\ x \cdot y \cdot y+6 x \cdot y \cdot y+5 y \cdot y \\ x^{2} y^{2}-6 x y^{2}+9 y^{2} \\ \text { e) }(17+6 x)^{2}=2 \\ 17^{2}+2 \cdot 17 \cdot 6 x+6 x^{2} \\ =289+346 x+6 \cdot x \cdot x \\ 155^{2}+2 \cdot 155 \cdot 325 \varphi^{2}+\left(325 p^{2}\right)^{2} \\ =24025+310 \cdot 325 p^{2}+105625 p^{4} \\ =24025+100750 \varphi^{2}+105625 \varphi^{4} \\\end{array} \)

Aufgabe:

Man soll diese binomischen Formeln vereinfachen.


Problem/Ansatz:

Ist das richtig?

Avatar von

2 Antworten

0 Daumen

c) und f) stimmen. Die Zwischenschritte braucht man an sich nicht, wenn man die binomischen Formeln direkt und vor allem korrekt anwendet. Die Fehler bei den anderen Aufgaben findest du, wenn du sorgfältiger arbeitest. Achte insbesondere auf Vorzeichen und Klammern.

Avatar von 19 k
0 Daumen

c)

(x·y - 3·y)^2
= x^2·y^2 - 6·x·y^2 + 9·y^2

d)

(7 - d)^2
= d^2 - 14·d + 49

e)

(17 + b·x)^2
= b^2·x^2 + 34·b·x + 289

f)

(155 + 325·p^2)^2
= 105625·p^4 + 100750·p^2 + 24025

Ein Tool wie Photomath macht dir das auch Schritt für Schritt vor, obwohl man ja nur die bekannte binomische Formel anwenden muss.

(a ± b)^2 = a^2 ± 2·a·b + b^2

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community