Aufgabe:
Problem/Ansatz:
a)
\( \sum\limits_{k=1}^{\infty} \) \( \frac{k+1}{k2 +k-1} \)
konvergiert absolut, da sie durch eine Konvergenzprüfung mit dem Quotientenkriterium gezeigt werden kann. Da der Grenzwert des Quotienten der aufeinanderfolgenden Terme kleiner als 1 ist, konvergiert die Reihe absolut.
b)
\( \sum\limits_{k=1}^{\infty} \) \( \frac{(-1)k}{\sqrt{k(k+2)}} \)
konvergiert bedingt, da sie eine alternierende Reihe ist und die Bedingungen des Leibniz-Kriteriums erfüllt. Die Folge der Beträge der Terme ist monoton fallend und konvergiert gegen Null.
c)
\( \sum\limits_{k=1}^{\infty} \) (\( \frac{ak2+bk+c}{dk2+ek+f} \))k
hängt von den Werten der Konstanten a, b, c, d, e und fab. Wir können die Wurzelkriterium verwenden, um die Konvergenz dieser Reihe zu prüfen.Das Wurzelkriterium besagt, dass die Reihe konvergiert, wenn der Grenzwert des k-ten Wurzels des Betrags des k-ten Terms kleiner als 1 ist. In diesem Fall wäre der k-te Term
| \( \frac{ak2+bk+c}{dk2+ek+f} \) | k
Wenn der Grenzwert des k-ten Wurzels dieses Terms kleiner als 1 ist, dann konvergiert die Reihe absolut. Wenn der Grenzwert größer als 1 ist, dann divergiert die Reihe. Wenn der Grenzwert gleich 1 ist, dann gibt das Wurzelkriterium keine Information, und wir müssen andere Methoden verwenden, um die Konvergenz zu prüfen.
Verhältniskriterium:
Das Verhältniskriterium besagt, dass die Reihe konvergiert, wenn der Grenzwert des Verhältnisses aufeinanderfolgender Terme kleiner als 1 ist.
In diesem Fall wäre der k-te Term
(| \( \frac{ak2+bk+c}{dk2+ek+f} \) | )k Der (k+1)-te term wäre
(| \( \frac{a(k+1)2+b(k+1)+c}{d(k+1)2+e(k+1)+f} \) | )(k+1)
\( \frac{(| \( \frac{a(k+1)2+b(k+1)+c}{d(k+1)2+e(k+1)+f} \) | )(k+1)}{(| \( \frac{ak2+bk+c}{dk2+ek+f} \) | )k} \)
Wenn der Grenzwert dieses Verhältnisses, wenn k
gegen Unendlich geht, kleiner als 1 ist, dann konvergiert die Reihe absolut. Wenn der Grenzwert größer als 1 ist, dann divergiert die Reihe.
d)
\( \sum\limits_{k=1}^{\infty} \) \( \frac{(k!)2}{(2k)!} \)
konvergiert absolut. Dies kann durch eine Konvergenzprüfung mit dem Verhältniskriterium gezeigt werden. Der Grenzwert des Verhältnisses der aufeinanderfolgenden Terme ist kleiner als 1, daher konvergiert die Reihe absolut.