Aloha :)
Beim Gauß-Algorithmus sollte dein Ziel sein, mit elementaren Gauß-Umformungen so viele Nullen wie möglich zu erhalten. Dabei gehst du am besten spaltenweise vor. Wenn du das konsequent verfolgst, kommst du an einen Punkt, wo du einfach keine weitere Null mehr hinkriegst. Dann endet der Algorithmus und du kannst das Ergebnis interpretieren.
Bei den ersten 3 Vektoren kann das etwa so aussehen:$$\begin{array}{rrr|c|l}\lambda_1 & \lambda_2 & \lambda_3 & = & \text{Aktion}\\\hline3 & 5 & 3 & 0 &-3\cdot Z_2\\1 & 2 & 2 & 0 &\\2 & 3 & 1 & 0 &-2\cdot Z_2\\\hline\green 0 & -1 & -3 & 0 &\cdot(-1)\\1 & 2 & 2 & 0 &+2\cdot Z_1\\\green0 & -1 & -3 & 0 & -Z_1 &\\\hline0 & \pink1 & 3 & 0 &\Rightarrow\pink{\lambda_2}+3\lambda_3=0\\\pink1 & \green0 & -4 & 0 &\Rightarrow\pink{\lambda_1}-4\lambda_3=0\\0 & \green0 & \green 0 & 0 & \checkmark\end{array}$$
Wenn du so viele Nullen wie mögich generierst hast, schaust du dir die Spalten an. Davon sollte es nun einige geben, die lauter Nullen und genau einen Wert ungleich Null enthalten (hier pink dargestellt). Die erhaltenen Gleichungen stellst du dann nach den zugehörigen pinken Variablen um:$$\pink{\lambda_2}=-3\lambda_3\quad;\quad\pink{\lambda_1}=4\lambda_3$$
Damit kannst du dann alle Lösungen angeben:$$\begin{pmatrix}\lambda_1\\\lambda_2\\\lambda_3\end{pmatrix}=\begin{pmatrix}4\lambda_3\\-3\lambda_3\\\lambda_3\end{pmatrix}=\lambda_3\cdot\begin{pmatrix}4\\-3\\1\end{pmatrix}$$
Es gibt also unendlich viele Tupel \((\lambda_1;\lambda_2;\lambda_3)\) als Lösung des Gleichungssystems, eines davon ist z.B. \((4;-3;1)\). Die 3 Vektoren sind daher linear abhängig.
Beim zweiten Set mit 3 Vektoren könntest du etwa so rechnen::$$\begin{array}{rrr|c|l}\lambda_1 & \lambda_2 & \lambda_3 & = & \text{Aktion}\\\hline1 & 3 & 3 & 0 &\\3 & 1 & 2 & 0 &-3\cdot Z_1\\2 & 3 & 1 & 0 &-2\cdot Z_1\\\hline1 & 3 & 3 & 0 & +Z_3\\\green 0 & -8 & -7 & 0 &-3\cdot Z_3\\\green0 & -3 & -5 & 0 &\cdot(-1)\\\hline1 & \green0 & -2 & 0 &\\0 & 1 & 8 & 0\\0 & 3 & 5 & 0 &-3\cdot Z_2\\\hline1 & 0 & -2 & 0 &\\0 & 1 & 8 & 0 &\\0 & \green0 & -19 & 0 &\div(-19)\\\hline1 & 0 & -2 & 0 &+2\cdot Z_2\\0 & 1 & 8 & 0 &-8\cdot Z_3\\0 & 0 & 1 & 0 &\\\hline\pink1 & 0 & \green0 & 0\\0 & \pink1 & \green0 & 0\\0 & 0 & \pink1 & 0\end{array}$$
Das Gleichungssystem hat nur die triviale Lösung \((0;0;0)\).
Daher sind die 3 Vektoren linear unabhängig.