Unendlichkeit ist etwas, dass die reale Welt nicht kennt. Man kann weder unendlich viele Zahlen aufschreiben, noch unendlich viele Zahlen addieren. Symbole bedeuten nichts, bis man sie definiert.
Insofern muss auch \( 0.\bar{9} \) ein abstrakt definiertes Symbol sein. In der Welt der Standardanalysis definieren wir dieses Symbol z.B. so:
$$ 0.\bar{9} = 0.999... := \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \dotsm := \sum_{i=1}^\infty \frac{9}{10^i} := \lim_{N\to\infty} \sum_{i=1}^N \frac{9}{10^i} $$
indem wir für die Definition den Grenzwertbegriff, den uns die Standardanalysis an die Hand gibt, nutzen. In dieser Theorie gilt:
$$ 0.\bar{9} = \lim_{N\to\infty} \sum_{i=1}^N \frac{9}{10^i} = 1 $$ $$ 0.\bar{3} = \lim_{N\to\infty} \sum_{i=1}^N \frac{3}{10^i} = \frac{1}{3} $$
Die Frage, ob \( 1 = 0.\bar{9} \) ist, hat keinen Bezug zur realen Welt. Es ist eine Frage, die man sich innerhalb einer mathematischen Theorie stellen kann, in der die Bedeutung der Symbole definiert ist, in der Unendlichkeit eine Bedeutung bekommt. In der Theorie der Standardanylsis gelten die obigen Identitäten. Man kann ihre Gültigkeit INNERHALB dieser Theorie formal beweisen.
Man kann aber durchaus auch andere mathematische Theorien bauen (Nicht-Standardanalysis), die ähnliches leisten, aber einfach anders funktionieren. Hier muss dann keineswegs mehr \( 0.\bar{9} = 1 \) sein. Einfach, weil sich dann die Bedeutung der Symbole verändert hat. Da man immer noch eine Approximation der Realität erreichen möchte, sollte \( 0.\bar{9} \) und \( 1 \) in solchen Theorien natürlich irgendwie "sehr, sehr ähnlich" sein, aber sie müssen eben nicht mehr zwingend formal identisch sein.