Im Skript steht:
Wenn - ein Skalarprodukt ist, dann wird durch \( \|\boldsymbol{x}\|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}} \) eine Norm definiert, d.h., für alle \( \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n} \) und alle \( \lambda \in \mathbb{R} \) gilt
(1) \( \|x\|=0 \Longrightarrow x=0 \)
(2) \( \|\lambda x\|=|\lambda|\|x\| \)
(3) \( \|\boldsymbol{x}+\boldsymbol{y}\| \leqslant\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \) (Dreiecksungleichung)
Muss ich dann einfach nur \( \|\boldsymbol{x}\|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}} \) lösen? Da steht ja bestimmen, dh. ich muss ja nichts zeigen?