Hallo.
(Kurz vorab: Ich hatte zuvor dir eine andere Lösung bereitgestellt, die jedoch etwas komplizierter war. Da wurde ich hier unten bei den Kommentaren darauf hingewiesen. Nun habe ich eine bessere Lösunh gefunden und dir das nun zugestellt)
Zuerst einmal ist die Aufgabenstellung lückenhaft! Die Zahl a muss positiv sein, also a > 0.
Ich habe es mal in zwei Schritte unterteilt und für a ≥ 1 gemacht. Für a = 1 ist das ganze trivial, also sei a > 1.
1) Sei a erstmal eine natürliche Zahl.
Dann kann man zuerst einmal die Abschätzung (a^n / n!) ≤ (a^a / a!)* (a / n) zeigen, die für jede natürliche Zahl n ≥ a gilt. Hinweis: Induktion nach n. Das zeigt dann insbesondere folgende Abschätzung (n! / a^n) ≥ (a! / a^a) n für alle n ≥ a. Dann ist die kleinere Folge schon divergent, was dann auch die Divergenz unserer Folge nach dem Vergleichstest impliziert.
2) Sei a dann eine reele und nicht natürliche Zahl mit a > 1. Dann wählen wir zunächst die Zahl x := Aufrundung(a), was ja eine natürliche Zahl ist mit x > a. Dann gilt wegen x > a > 1 auch x^n > a^n, was dann insgesamt für alle n:
(n! / x^n) < (n! / a^n) folgert. Überlege jetzt mal, warum (n! / a^n) für jedes reele a > 1 gegen inf divergieren muss? Hinweis: Nutze das obige Gezeigte…