Ich berechne zunächst \(a^2b^2c^2d^2\).
Setze:
\(w=a^2 = 2+\sqrt 3\)
\(\Rightarrow b^2 = 2 +\sqrt w\)
\(\Rightarrow c^2 = 2 +b\)
\(\Rightarrow d^2 = 2 -b\)
\(\Rightarrow c^2d^2 = 4 -b^2 = 2-\sqrt w\)
\(\Rightarrow b^2c^2d^2 = 4-w= 2- \sqrt 3\)
\(\Rightarrow a^2b^2c^2d^2 =(2+\sqrt 3)(2- \sqrt 3) = 1\)
Da \(a,b,c,d > 0\) ist also \(abcd=1\).