∠DAC=α ∠ADC=α ∠BDC=180°-α ∠ABC=90°-α ∠BCD=2α-90°
\( \frac{\sin(180°-α)}{a}= \frac{\sin(90°-α)}{b}=\frac{\sin(2α-90°)}{\overline {DB}} \)
\( \frac{\sin(α)}{a}= \frac{\cos(α)}{b}=\frac{\sin(2α-90°)}{\overline {DB}} \)
∠DCA=90°-(2α-90°)=180°-2α
\( \frac{\sin(α)}{b} =\frac{\sin(180°-2α)}{\overline {AD}} \)
\(\overline {AD} =\frac{b (180°-2α}{\sin(α)} \)
\(\overline {DB} =c-\overline {AD}=c- \frac{b (180°-2α}{\sin(α)} \)
\( \frac{\sin(α)}{a}= \frac{\cos(α)}{b}=\frac{\sin(2α-90°)}{c- \frac{b (180°-2α)}{\sin(α)}} \)
\( \frac{\sin(α)}{a}= \frac{\cos(α)}{b}=\frac{\sin(α)\cdot\sin(2α-90°)}{c\cdot \sinα- b (180°-2α)} \)
\(\sin(α)=\frac{a}{c}\)
\( \frac{\frac{a}{c}}{a}= \frac{\cos(α)}{b}= \)
\(\frac{1}{c}= \frac{\cos(α)}{b}= \)
Im Augenblick sehe ich da noch keinen weiteren Weg.