$$\lim _{ h\rightarrow 0 }{ \frac { f(1+h)-f(1) }{ h } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { \frac { 1 }{ (1+h)^{ 2 }+1 } -\frac { 1 }{ 1^{ 2 }+1 } }{ h } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { \frac { 1 }{ 2+2h+h^{ 2 } } -\frac { 1 }{ 2 } }{ h } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { \frac { 2 }{ 2(2+2h+h^{ 2 }) } -\frac { (2+2h+h^{ 2 }) }{ 2(2+2h+h^{ 2 }) } }{ h } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { 2-(2+2h+h^{ 2 }) }{ 2(2+2h+h^{ 2 })h } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { -2h-h^{ 2 } }{ 4h+4h^{ 2 }+2h^{ 3 } } }$$$$=\lim _{ h\rightarrow 0 }{ \frac { -2-h }{ 4+4h+2h^{ 2 } } }$$$$=-\frac { 2 }{ 4 }$$$$=-\frac { 1 }{ 2 }$$
Zum Teil b) fällt mir leider gar nicht ein, wie man unter Verwendung von Teil a ) den Grenzwert bei x = 0 bestimmen soll. Vielleicht hat noch jemand anderes eine Idee ... ?