Hi Emre,
das ist soweit richtig.
Die Polstellen dürften eigentlich kein Problem darstellen. Das ist doch einfach ;).
f(x) = x^3/(x^2-4)
hat die Nennernullstellen x = -2 und x = 2 (leicht mit dritter binomischen Formel zu zeigen).
Folglich liegen dort auch unsere Polstellen.
Die Asymptote würde ich in diesem Beispiel weglassen :P. Das ist schon keine waagerechte Asymptote mehr, sondern eine schiefe. Generell nicht schwierig aber als Einstieg auch nicht geeignet ;).
Der Vollständigkeithalbeit ist das y = x, wie mit Polynomdivision gezeigt werden kann.
Diesmal sind auch die Asymptoten eingezeichnet^^.
Grüße