0 Daumen
1,2k Aufrufe

Berechnen sie Realteil, Imaginärteil und Betrag

von:

i) 7 ± i 

ii) (7 + i) / (i + 1)

iii) ((2/(3 + i)^{2}) +  ((2/(3 - i)^{2})


bitte um hilfe ich habe keine Ahnung was ich machen muss!

Avatar von

2 Antworten

0 Daumen
Du musst die Zahlen immer in der Form a+bi schreiben.
Bei (i) ist das schon der Fall  7+i =   7 + 1*i
Dann ist 7 der Real und 1 der Imaginärteil.
Bei    7-i    ist Re=7 und Im=-1
   Betrag ist immer Wurzel aus (Im^2 + Re^2), hier also bei beiden Wurzel aus 50.

Bei (ii) und (iii) musst du erst mal auf die Form a+bi umformen.
Avatar von 289 k 🚀

wirkt mir irgendwie zu einfach :D

dann rechne das mal für die anderen Werte aus, so einfach ist das gar nicht.

Zum Beispiel bei (ii) musst du mit (i-1) erweitern.

ok doch nicht so einfach.

Woher weiß ich das ich erweitern muss?

Das ist ein häufiger Trick um im Nenner die komplexe Zahl wegzukriegen.

0 Daumen

i) 7 ± i 

Re(7+i) = 7

Re(7-i) = 7

Im(7+i) = 1

Im(7-i) = -1

Betrag(7±i) = √(49 + 1) = √50 = 5*√2

ii) (7 + i) / (i + 1) = 

= ((7+i)(1-i)/((1+i)(1-i)) 

= ( 7 + 6i + 1)/(1 + 1)= (8 + 6i)/ 2 = 4 + 3i.

Im(4+3i) = 3

Re(4+3i) = 4

Betrag ( 4 + 3i) = √(16 + 9) = √25 = 5

iii) ((2/(3 + i)2) +  ((2/(3 - i)2)            | Bruchaddition

= ( 2(3-i)^2  + 2(3+i)^2 ) / ((3+i)^2 (3-i)^2) 

usw.

Avatar von 162 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community