die Funktion f(x,y) = √x + √y soll unter der Nebenbedingung x+y=100 optimiert werden.
Ich gehe folgendermaßen vor:
1) Lagrange Funktion aufschreiben:
L(x,y) = √x+ √y-λ(x+y-100)
2) Nach x und y ableiten
L'(x) = 1/2x-0,5 - λ
L'(y) = 1/2y-0,5 - λ
3) Gleichungen = 0 setzen und nach λ auflösen
1/2x-0,5 = λ
1/2y-0,5= λ
4.) λ=λ setzen um eine Variable zu ermitteln
1/2x-0,5=1/2y-0,5 I : 1/2
x-0,5 = y-0,5 I ln()
ln(x-0,5) = ln(y-0,5)
-0,5ln(x) = -0,5ln(y)
Diese Vorgehensweise ist vielleicht nicht die gebräuchliche (oder etwa doch?) aber ich komme mit diesem Schema für gewöhnlich am besten klar.
Meine letzte Lagrange Funktion ist schon ein bisschen her und nun komme ich nicht weiter. Bei meiner Gleichung erhalte ich ja zwangsläufig x=y. Normalerweise setze ich die Variable die ich erhalten habe in die NB ein und erhalt so die andere Variable. Dann errechne ich mein λ und setze x,y in die Ausgangsfunktion ein um den Optimalwert zu berechnen. Wie muss ich aber in diesem Fall vorgehen, wenn x=y ist?