Das scheint mir aber falsch.
Was muss ich machen?
Du könntest z.B. wie folgt vorgehen
TAN(ARCTAN(x)) = x
TAN'(ARCTAN(x)) · ARCTAN'(x) = 1
ARCTAN'(x) = 1/TAN'(ARCTAN(x))
Merke: TAN'(x) = 1/COS(x)^2 = TAN(x)^2 + 1
ARCTAN'(x) = 1/(TAN(ARCTAN(x))^2 + 1)
ARCTAN'(x) = 1/(x^2 + 1)
Wie kommt man auf tan'(arctan(x)×arctan'x=1
???
Darf man nicht sagen arctan(x)=1/tan(x)?
Macht man das bei arc tan immer so?
Ich leite beide Seiten der Gleichung ab. Links benutze ich die Kettenregel rechts ist die Ableitung trivial.
arctan(x)=1/tan(x) ist mit sicherheit verkehrt. ARCSIN ist die umkehrung vom Sinus und auch nicht 1/SIN(x)
Ok danke
Ich ube mal noch mehr aufhabrn
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos