a)
f ( x ) = ( x2 + 2x ) / x4
es gibt mehrere Varianten zur Lösung
zuerst Summandenweises teilen
f ( x ) = x2 / x^4+ 2x / x^4
f ( x ) = 1 / x^2 + 2 / x^3
f ( x ) = x^{-2} + 2 *x^{-3}
Dann summandenweise Integrieren. Dann hast du
keine Verkettung.
Durch den negativen Exponenten wirds ein bißchen
komplizierter ist aber das gleiche Schema wie bei einem
positiven Exponenten
∫ x^n = x^{n+1} / ( n + 1 )
∫ x^{-2} = x^{-2+1} / ( -2 + 1 ) = x^{-1} / ( -1 ) = - x^{-1} = - 1 / x
usw
∫ f ( x ) = x^{-1} / (-1 ) + 2 * x^{-2 } / ( -2 ) = - x^{-1} - 1 * x^{-2}
= - 1/x - 1 / x^2
Bin bei Bedarf weiter behilflich