Zitat: "Wir haben das in der schule so gemacht: g:y=3x-1 => k=3; A(0/<1)........g:X= A+t*(1/k)= (0,-1)(vektor) +t*(1,3)(vektor) Was ich da nicht verstanden habe ist wie man dort auf A gekommen ist."
Hi, in der Schule habt ihr vermutlich das gemacht, was man auch beim Zeichnen einer Geraden der Form \(y = m \cdot x + n \) macht: Ausgehend von einem ersten Punkt (hier der Schnittpunkt mit der y-Achse) als Startpunkt wird ein zweiter Punkt eine Längeneinheit in der Horizontalen und m Längeneinheiten in der Vertikalen markiert, um die Richtung festzulegen. Dies sieht in Vektorschreibweise so aus:
$$ \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 0\\n \end{pmatrix} + t \left(\begin{pmatrix} 0\\n \end{pmatrix} + \begin{pmatrix} 1\\m \end{pmatrix}\right) $$
Und ergibt schließlich:
$$ \begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 0\\n \end{pmatrix} + t \begin{pmatrix} 1\\n+m \end{pmatrix} $$
Man kann sich natürlich auch einen anderen Startpunkt verschaffen oder die Steigung m durch passendes Erweitern verschönern, etwa um einen ganzzahligen Richtungsvektor zu bekommen.