0 Daumen
34k Aufrufe
Wandeln Sie die Funktionsgleichung um in die Scheitelform, und geben Sie die Koordinaten des Parabelscheitels an:

 
f(x) = -x²-8x-13
Avatar von

Siehe Verfahren im Video:

Quadratische Funktionen: Allgemeinform und Quadratische Ergänzung

Quelle: Mathe F06: Quadratische Funktionen (Parabeln)

3 Antworten

0 Daumen
 
Beste Antwort

Die Scheitelpunktform kann man(unter anderem) mit der quadratischen Ergänzung ermitteln.

 f(x)=-x²-8x-13          |*(-14)

-f(x)=x²+8x+13        | quadratische Ergänzun (p/2)²⇒(8/2)²⇒16

-f(x)=x²+8x+16-16+13

-f(x)=(x+4)²-16+13

-f(x)=(x+4)²-3            |*(-1)

 f(x)=-(x+4)²+3

Daraus kann man den Scheitelpunkt ablesen x=-4 ; y=3

Avatar von 40 k
bei der quadratische Ergänzung muß es korrkt (p/2)² heißen

Diese Seite ist echt richtig gut, wenn man etwas nicht richtig vestanden hat :)

0 Daumen

Hast du dir bereits die ähnlichen Fragen angeschaut und nach einem Ansatz gesucht?

- Umwandeln einer Scheitelpunktform in eine Normalform?

- Wie kann ich die Normalform in eine Scheitelpunktform umwandeln?

- Wie kommt man von der Normalform zur Scheitelpunktform?

- Wie kann ich den Scheitelpunkt bei der Funktion y=20x-5x² bestimmen?

 

Du benötigst die sogenannte Quadratische Ergänzung, um die Umformung zur Scheitelpunktform durchführen zu können, siehe:

- Problem bei der quadratischen Ergänzung, wenn vor dem x² eine Zahl steht.

- Wie berechne ich eine quadratische Ergänzung?

 

f(x) = -x²-8x-13 = -1*x²-8x-13

Graph der Funktion f als Hilfestellung:

parabel-nach-unten


Der Scheitelpunkt liegt bei S(-4|3).

Avatar von 7,3 k
0 Daumen

f(x)=x28x13f(x)=-x^2-8x-13

x2+8x+13=0x^2+8x+13=0 

x2+8x=13x^2+8x=-13 

x2+8x+(82)2=13+(82)2x^2+8x+(\frac{8}{2})^2=-13+(\frac{8}{2})^2

(x+4)2=3±  (x+4)^2=3 |±\sqrt{~~}

1.)

x+4=3x+4=\sqrt{3 }

x1=4+3x_1=-4+\sqrt{3 }

2.)

x+4=3x+4=-\sqrt{3 }

x2=43x_2=-4-\sqrt{3 }

Nun liegt die Scheitelstelle in der Mitte zwischen den beiden Nullstellen:

xS=4+3+(43)2=4x_S=\frac{-4+\sqrt{3 }+(-4-\sqrt{3 })}{2}=-4

f(4)=428(4)13=3f(-4)=-4^2-8\cdot (-4)-13=3 

S(43)(-4|3)

Scheitelpunktform:

p(x)=(x+4)2+3p(x)=-(x+4)^2+3


Unbenannt.JPG



Avatar von 42 k

Ein anderes Problem?

Stell deine Frage