f(x) = x^2
Ableiten
f'(x) = 2x
oder den Differenzenquotient/Differenzialquotient bilden
m = (f(x + h) - f(x)) / h
m = ((x + h)^2 - x^2) / h
m = (x^2 + 2xh + h^2 - x^2) / h
m = (2xh + h^2) / h
m = 2x + h
Und bei h --> 0 gilt damit
f'(x) = 2x
P1(2/4) , P2(-1/1), P3(0/0), P4(-0,5/0.25)
f'(2) = 4
f'(-1) = -2
f'(0) = 0
f'(-0.5) = -1