((x + h)^{1/3} - x^{1/3})/h
= ((x + h)^{1/3} - x^{1/3})·((x + h)^{2/3} + (x + h)^{1/3}·x^{1/3} + x^{2/3}) / (h·((x + h)^{2/3} + (x + h)^{1/3}·x^{1/3} + x^{2/3}))
= h / (h·((x + h)^{2/3} + (x + h)^{1/3}·x^{1/3} + x^{2/3}))
= 1 / ((x + h)^{2/3} + (x + h)^{1/3}·x^{1/3} + x^{2/3})
Für h --> 0
= 1 / (x^{2/3} + x^{1/3}·x^{1/3} + x^{2/3})
= 1 / (3·x^{2/3})