f(x) = (x^3 - 1)^4·(√x + x)^2
f'(x) = 4·(x^3 - 1)^3·(3·x^2)·(√x + x)^2 + (x^3 - 1)^4·2·(√x + x)·(1/(2·√x) + 1)
f'(x) = 12·x^2·(x^3 - 1)^3·(√x + x)^2 + 2·(x^3 - 1)^4·(√x + x)·(1/(2·√x) + 1)
f'(x) = (x^3 - 1)^3·(√x + x)·(12·x^2·(√x + x) + 2·(x^3 - 1)·(1/(2·√x) + 1))
f'(x) = (x^3 - 1)^3·(√x + x)·(12·x^3 + 12·x^{5/2} + 2·x^3 + x^{5/2} - 1/√x - 2)
f'(x) = (x^3 - 1)^3·(√x + x)·(14·x^3 + 13·x^{5/2} - 1/√x - 2)