f(x) = - a·x^3 + 3·x^2
f'(x) = 6·x - 3·a·x^2
f''(x) = 6 - 6·a·x
f'''(x) = - 6·a
Extrempunkte f'(x) = 0
6·x - 3·a·x^2 = 0 --> x = 2/a ∨ x = 0
f(0) = 0
f''(0) = 6 --> Tiefpunkt (0 | 0)
f(2/a) = 4/a^2
f''(2/a) = -6 --> Hochpunkt (2/a | 4/a^2) mit a <> 0
Wendepunkte f''(x) = 0
6 - 6·a·x = 0
x = 1/a
f(1/a) = 2/a^2 --> Wendepunkt (1/a | 2/a^2) für a <> 0
f'''(1/a) <> 0
Ortskurve der Extrempunkte
6·x - 3·a·x^2 = 0 --> a = 2/x
y = - (2/x)·x^3 + 3·x^2 = x^2
Skizze