wenn das immer der gleiche Zinssatz p gewesen ist, dann
((25000(*1+p/2) - 10000 )*(1+p/2) - 5000 )*(1+p) = 15000
⇔ (15000+12500p )*(1+p/2) - 5000 )*(1+p) = 15000
⇔ (15000+12500p +7500p + 6250p^2 - 5000)*(1+p) = 15000
⇔ (10000+20000p + 6250p^2 )*(1+p) = 15000
⇔ 10000+20000p + 6250p^2 + 10000p+20000p^2 + 6250p^3 = 15000
⇔ 10000+30000p + 26250p^2 + 6250p^3 = 15000
p ungefähr 0,147 also 14,7%.