Weierstraß-Substitution
tan(x/2) = t
x/2 = arctan(t)
x = 2·arctan(t)
Damit ist dann
cos(x) = cos(2·arctan(t))
Nutze: cos(2·α) = 2·cos(α)^2 - 1
cos(x) = 2·cos(arctan(t))^2 - 1
Nutze: cos(arctan(x)) = 1/√(x^2 + 1)
cos(x) = 2·(1 / √(t^2 + 1))^2 - 1
cos(x) = 2·1 / (t^2 + 1) - 1
cos(x) = 2 / (t^2 + 1) - 1
cos(x) = 2 / (t^2 + 1) - (t^2 + 1) / (t^2 + 1)
cos(x) = (2 - (t^2 + 1)) / (t^2 + 1)
cos(x) = (2 - t^2 - 1) / (t^2 + 1)
cos(x) = (1 - t^2) / (t^2 + 1)
Damit ist dann
1/cos(x) = (t^2 + 1) / (1 - t^2)