wir haben eine Aufgabe bekommen wo wir Funktionen fn,f :[0,1] →ℝ betrachten sollen für n ∈ ℕ, n ≥ 2
\( f n(x)=\left\{\begin{array}{ll}{n^{2}} & {\text { für } 0 \leq x \leq 1 / n} \\ {n^{2}\left(\frac{2}{n}-x\right),} & {\frac{1}{n}<x \leq \frac{2}{n} \text { und } f(x)=0 \text { für } x \in[0,1]} \\ {0,} & {\frac{2}{n}<t \leq 1}\end{array}\right. \)
Wir sollen zeigen das fn(x) punktweise konvergiert aber nicht gleichmäßig. Für punktweise Konvergenz muss ich zeigen, dass der lim n→∞ fn = f ist.
Aber wenn ich den lim n→∞ n^2 * x bilde finde ich nur für 0 den Grenzwert, für x größer Null, kleiner 1/n finde ich ihn nicht. Schuldigung falls das blöd rüberkommt, aber ich komm hier nicht weiter.